25th July
An Australian company is using “cheap as dirt” iron ore to convert methane in natural gas into hydrogen. Importantly, their process generates near-zero emissions, as the carbon content of the gas is captured in the form of high-quality graphite.
As a clean-burning fuel, hydrogen could play a key role in future energy markets, but production methods are still too energy-intensive and costly.
Hazer Group is a Perth-based company, spun out of the University of Western Australia, which plans to halve the cost of hydrogen production. It is currently scaling-up its patented process, based on “methane cracking”.
“The chemistry is remarkably simple,” says Geoff Pocock, the managing director of the ASX-listed company, which raised A$5m at its initial public offering in September 2015. “You can think of it as a self-sequestering energy production system.”
As natural gas passes through the heated iron ore catalyst, methane in the gas breaks down into its constituent elements: hydrogen and carbon. But instead of carbon dioxide, would-be emissions are captured in the form of solid graphite.
Some of the hydrogen is used to power the system, and in the surplus “you’ve got a hydrogen source, which hasn’t got a CO2 footprint,” he says.
Halving the cost of hydrogen
What’s most intriguing about Hazer’s process is the ultra-cheap catalyst and the secondary commodity in graphite, which can be sold to offset production costs.
Graphite is used in the production of lithium-ion batteries, and while prices vary depending on the quality, Pocock says it averages at about US$1,000 per tonne. Globally, the graphite market is worth around US$13bn annually.
“The early stage indication is certainly that it has the potential to be not only the cleanest but the cheapest way of making hydrogen globally,” says Pocock.
“We’re using a catalyst that, in Western Australia in particular, is as cheap as dirt. You can throw it away when you don’t need it anymore, and it suddenly means that the catalyst cost comes out of the economics of the process.
“Our goal is to be halving or more than halving the cost [of hydrogen production], so taking it from $1 to $1.50, down to $0.50 to $0.75 per kilogram.”
A gateway to cleaner energy
When hydrogen is combusted to generate heat, or used in fuel cells to generate electricity, the only byproduct is water. As a result, it has long been heralded as a low-carbon energy carrier, which could replace gasoline as a transport fuel,powering electric vehicles, or natural gas as fuel to heat buildings.
But less than 5% of the 65m tonnes of hydrogen produced each year (comprising a market worth about US$100bn annually) is currently used for energy applications, says Pocock.
To read full article in The Guardian, please click here.
Where can you find Customer Services for WordPress